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ABSTRACT

The application of computer implementation technology to network

optimization has brought about unprecedented advances in solution

efficiency. The remarkable gains of the early to mid 1970's for solv-

ing transportation and transhipment problems are widely known, en-

abling network codes to out-perform LP codes by two orders of magnitude

for these problems. The pioneering study by Gilsinn and Witzgall

demonstrated that effective use of computer implementation technology

could reduce solution times for shortest path problems from one minute

to slightly more than one second, using the same general shortest path

algorithm, computer, and compiler.

The momentum launched by these studies has not dwindled, but con-

tinues into the present. New advances in all areas of network optimiza-

tion have recently superseded the procedures previously found to be

best. Latest computer implementations clearly outstrip the best codes

of the recent past as our understanding of the important relation between

algorithmic design and implementation continues to grow.

We undertake to report on some of the major computer implementation

studies of the past few years and to present preliminary results on the

new developments.
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INTRODUCTION

The historical development of network algorithms has paralleled

and contributed to the growth of an important interface between mathe-

matics and computer science, called computer implementation technology.

This technology, which started back in 1952 with the implementation of

the Stepping Stone Method on the National Bureau of Standards Eastern

Automatic Computer, has been recognized only recently as a major dis-

cipline in its own right.

Computer implementation technology seeks to determine efficient

special procedures for carrying out subalgorithms of a general method

on a digital computer by investigating (1) what kinds of information

to generate and maintain for executing operations most effectively,

(2) which data structures are best to record, access and update this

information, and (3) what methods are most suitable for processing

these data structures to make the desired information available when

it is needed.

To garner such knowledge requires experimentation that artfully

blends the best elements of mathematics and computer science. The

computer is used both to evaluate the efficiency of resulting algo-

rithmic processes (embodied in executable programs) and to provide

statistics about the operation of key components under varying test

conditions. Properly generated and utilized, these statistics allow

researchers to gain valuable insights on how to improve the design

of these components. This iterative modification, integration, and

evaluation of key processes is directly analogous to the laboratory
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research of other disciplines and leads us to view computer implementa-

tion technology as the laboratory research of mathematics and computer

science.

The application of computer implementation technology to network

optimization has brought about unprecedented advances in solution

efficiency. The remarkable gains of the early to mid 1970's for solv-

ing transportation and transshipment problems are widely known, en-

abling network codes to out-perform LP codes by two orders of magnitude

for these problems. The pioneering study by Gilsinn and Witzgall

demonstrated that effective use of computer implementation technology

could reduce solution times for shortest path problems from one minute

to slightly more than one second, using the same general shortest path

algorithm, computer, and compiler.

The momentum launched by these studies has not dwindled, but con-

tinues into the present. New advances in all areas of network optimiza-

tion have recently superseded the procedures previously found to be

best. Latest computer implementations clearly outstrip the best codes

of the recent past as our understanding of the important relation between

algorithmic design and implementation continues to grow.

We undertake to report on some of the major computer implementation

studies of the past few years and to present preliminary results on the

new developments.

SHORTEST PATH ALGORITHMS

Shortest path analysis (finding the shortest paths from a single

node to all other nodes in a directed network unless otherwise specified)

.4!
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was one of the first network areas to benefit greatly from the applica-

tion of computer implementation technology [35].

The importance of shortest path solutions in quantitative trans-

portation and communication models has caused a great deal of activity

in this area, generating a proliferation of shortest path algorithms in

the literature. However, more careful consideration discloses there

are only a handful of general shortest path methods, each containing a

number of subalgorithms. These latter are designed to handle special

subproblems or sets of operations such as finding the minimum of a set,

breaking a loop, reconnecting subtrees, carrying out computations over

the nodes and arcs of subtrees, etc.

The many different ways developed to handle these subproblems,

unfortunately, have often been referenced as different algorithms rather

than as variants of the small class of general algorithms. Contributions

toward a unified framework for shortest path algorithms have been made

by Denardo and Fox [17], Dial, Glover, Karney, and Klingman [19],

Dreyfus [23], and Gilsinn and Witzgall [351.

Gilsinn and Witzgall [35] were the first to conduct an extensive

computational study. They found that the Dijkstra algorithm [20], using

an address calculation sort proposed by Dial [18], was the most efficient

of the methods tested. The subsequent study of [19] evaluated an ex-

panded range of solution procedures and problem structures. This study

showed the most efficient method depended on problem topology. For

relatively dense random problems, the best implementation of Dijkstra's

procedure was dominated by an implementation of Dantzig's algorithm [15]

...1 u . ,: . - - . .,: : e . ' -. .. .. .
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(using an address calculation sort in both cases). For sparse random

and grid problems the best Dantzig implementation was in turn inferior

to a label-correcting procedure due to Pape (561 (designed to process a

candidate node list from both ends). A by-product of this work was to

demonstrate the perhaps surprising result that all of the tested short-

est path methods could be interpreted as special variants of the primal

simplex method. (Computer listings of the best codes, all in FORTRAN,

can be obtained from the authors.)

Sequels to the study of [19] have been undertaken by Klingman, Mote,

and Whitman (46], Elam, Klingman, and Mulvey [25], and Klingman and

Mulvey [47], extending the best algorithms of [19] to "in-core out-of-

core" implementations and mini-computers. The study of Denardo and Fox

(171 has further developed new "multiple bucket" algorithms that are

projected to be efficient for extremely large problems. The problems

tested in their study, however, were solved more efficiently by es-

sentially the same label-correcting procedure found best for sparse

random problems in [19]. (Extrapolation of solution times for the

multiple bucket algorithms suggest the possibility that the multiple

bucket methods may dominate for some larger problem size.)

Another study by Florian, Nguyen, and Pallottino [28] focuses on

advanced dual methods for problems of finding shortest paths between

all pairs of nodes (in contrast to finding shortest paths from a single

source to all others), and reports promising gains in efficiency for

these problems. This work provides a method for the "all node pairs"

(multiple-origin) problem that is 37% faster than an implementation of

1
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Pape's method [56] applied in iterative fashion over successive origins.

It is important to note, however, that the first shortest path problem

is solved using an implementation of Pape's method.

The latest advance, still in a developmental stage, is a new

label-correcting code by the authors employing a threshold/partitioning

scheme for candidate node management. This procedure appears to give

it many of the advantages of a label-setting code, yet with greater

efficiency than the previously best codes of either the label-setting

or label-correcting type.

Preliminary testing on 40 sparse random problems containing 10,000

arcs and 1250 to 2000 nodes yields solution times 36% to 44% faster

than the best code, called Pape (56], for these structures.

Table I contains the mean solution times over ten problems for each

problem size. Also Table I indicates the number of nodes scanned by

the new code, called THRESH. The results show that the number of nodes

scanned is only slightly larger than the total number of nodes, which

gives an indication of an upper limit on its efficiency. If these re-

sults carry over to other problem topologies, they will not only es-

tablish the superiority of this new method for single-origin shortest

path problems, but also for "all node pairs" shortest path problems

approach in [28].

ASSIGNMENT PROBLEMS

Assignment problems have had a colorful history. Representing an

important special case of the transportation problem, they were among

IL
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TABLE I

MEAN SOLUTION TIMES (CPU SECONDS ON A CDC 6400

USING THE FORTRAN FTN COMPILER) FOR SHORTEST

PATH PROBLEMS WITH 10,000 ARCS; DISTANCES 1-200.

(10 Problems were solved for each node size)

No. of Nodes 2000 1667 1429 1250

PAPE 4.2 4.7 4.9 4.7

THRESH 2.7 2.8 2.7 2.9

THRESH
No. of Nodes Scanned 2150 1747 1511 1371
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the first network problem classes to be considered worthy of investiga-

tion in their own right, and a number of different algorithms were

proposed for solving them. For a number of years Kuhn's "Hungarian

method" [50] was judged to be best, though a specialization of the out-

of-kilter method later appeared to provide the best computer times [41].

The first departure from these "classical" approaches occurred with the

development of the alternating path basis (AP-AB) primal simplex method

for networks [5, 6], which turned out to yield a highly effective speciali-

zation for assignment problems. The AP-AB procedure implemented by Barr,

Glover, and Klingman [5] appeared to be somewhat faster than the best

previous code of [41], and to utilize less memory.

Subsequently, a great deal of new activity has taken place in the

assignment area. Hung and Rom [43] developed a "recursive" method for

exploiting the AP-AB structure that is twice as fast as the AP-AB code

of [5] for totally dense problems. Since the Hung and Rom code was

developed for totally dense problems, it is substantially slower than

the AP-AB primal simplex code [5] on non-dense problems. (See Table

At about the same time, Weintraub [60] tested an implementation

of the Edmonds and Karp assignment procedure that proved still more

efficient than the Hung and Rom code. (See Table II.) G. L. Thompson

159] developed a special assignment procedure of yet another type that

appears highly promising, but that has not been tested against alter-

native methods.

" 12pp
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TABLE II

SOLUTION TIMES IN SECONDS ON A DUAL CYBER 170/175

USING THE FTN COMPILER FOR 200 x 200 ASSIGNMENT

PROBLEMS WITH COST RANGE 1-100

NUMBER OF ARCS

CODE 1500 2250 3000 3750 4500

AP-AB
(Barr, et al) .483 .603 .634 .684 .916

RELAX
(Rom-Hung) 1.365 1.462 1.168 1.054 1.157

did not
Dual achieve
(Weintraub) .173 optimality .272 .291 .343

SPAN
(Engquist) .080 .175 .150 .282 .182

PDQIK
(Glover, Glover
and Klingman) .065 .092 .107 .091 .127

* The times reported in this table are the results of testing con-

ducted by Professor Michael Engquist and not by the authors. We
greatly appreciate being permitted to use them.
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More recently, a comparative study of assignment methods has

been undertaken by Engquist (27]. Engquist has observed that the

assignment procedure due to Dinic and Kronrod (22] is similar to the

one developed by Hung and Rom (43], though derived from entirely

different conceptual bases. The study of Engquist shows that a re-

fined implementation of Dinic and Kronrod's procedure, which is em-

bodied in a code called SPAN, is very efficient. (See Table II.)

Another innovation in assignment solution procedures, which was

developed after Hung and Rom's work but before Engquist's work, was

motivated by the advance in shortest path methods embodied in the

THRESH code. The thresholding and partitioning strategies of THRESH

have been extended by F. Glover, R. Glover, and Klingman to accelerate

successive optimization steps of a "primal-dual" type of algorithm.

Building on refinements in primal-dual methodology due to Ellis Johnson

(44] and adding further refinements to capitalize on the THRESH strate-

gies, the resulting assignment procedure, called PDQIK, appears sub-

stantially superior even to Engquist's streamlined version of Dinic

and Kronrod's method. (See Table II,)

The assignment problems of Table II were generated using NETGEN

[49] and the problem specification given in [49] for problems numbered

11-15. (See Table VIII.)

MAXIMUM FLOW PROBLEMS

For a number of years the maximum flow network problem has attracted

the attention of prominent researchers in network optimization. Since

,, - ...... ' .'I .. .2 . . .... " "
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the ground-breaking work of Ford and Fulkerson, a variety of algorithms

featuring good "worst-case" bounds have been proposed for this problem.

Surprisingly though, there have been almost no empirical evaluations of

these algorithms.

Cheung [11] recently conducted the first significant computational

investigation of maximum flow methods, testing several of the major ap-

proaches. Although an important step in the right direction, Cheung's

implementations employ methodology and data structures originating at

least a dozen years ago. That is, the many advances in network imple-

mentation technology of the past decade were not incorporated into

these codes.

To remedy this situation, Glover, Klingman, Mote, and Whitman [39]

tested maximum flow implementations designed to make effective use of

the recent developments in network labeling and data organization tech-

niques. To safeguard against being swayed too heavily by preliminary

analyses (and past experience in other network settings), the study

implemented more than one type of data structure and associated process-

ing techniques for the algorithms tested. Additionally, the resulting

codes were tested on four distinct problem topologies.

The investigation included in its examination the two most widely

heralded general classes of algorithms for maximum flow network

problems--the label tree and referent algorithms. Over 50 codes were

developed and at least partially tested for these methods. In the pro-

cess, a new member of the referent class of algorithms was developed,

called the sub-referent method, which proved far more effective than

all others.
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In addition, the study investigated a third type of approach

which constitutes a special-purpose variant of the primal simplex

method. Previously, researchers had neglected primal methods in

favor of more classical labeling types of algorithms, primarily be-

cause simple choice rules yield good worst-case bounds for these

methods. Recently, Cunningham [12, 13] has partly removed the

theoretical bias against primal simplex maximum flow methods by

deriving a computational bound for one of its variants (different

from the one tested in [391). Although this theoretical bound is

not nearly as good as those for label tree and referent algorithms,

practical experience in the network area over the past decade argues

strongly for testing a derivative of the primal simplex method, which

has proved highly robust and effective in other settings.

The study of [39] tested over twenty implementation variants of

the primal simplex method. Independently, Grigoriadis and Hsu [40]

recognized the lack of testing in the literature of the primal simplex

method on maximum flow problems. Accordingly, they applied a modified

version of their code, RNET, designed for solving minimum cost flow

problems, and found it surprisingly efficient [401.

Two of the approximately 70 algorithmic implementations of label

tree, referent and primal methods tested in [39] stand out far above

all the rest. One of these is an implementation of the new sub-referent

method which is dramatically faster than all contenders on two of the

problem topologies tested. The other method that stands above the rest
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of the field is an implementation of a variant of the primal simplex

method, called SEQCS, which is fastest on two of the problem topologies

and is second in efficiency to the sub-referent method on the other

two problem topologies. In addition, the primal simplex variant re-

quires approximately one-third the computer memory required by other

algorithms, and lends itself more readily to an efficient in-core out-

of-core implementation. A rather surprising result of this study [39]

is that even the best label tree codes, which incorporate the "collective

wisdom" of many contributors [11, 16, 24, 32, 34] to the original label

tree algorithm of Ford and Fulkerson [301, do not compete favorably

against either referent or simplex based codes.

The development and testing of Grigoriadis and Hsu [40] of a

modified version if RNET on maximum flow problems raises the in-

triguing question of whether--or to what extent--it is useful to

develop fully specialized primal simplex methods for maximum flow

problems. Accordingly, we undertook to investigate this issue by

testing both specialized and semi-specialized primal simplex codes

on the same maximum flow problems, computer, and compiler.

The specialized primal simplex code used in our test is the SEQCS

code described in [39] and the semi-specialized primal simplex code is

RNET [40] using the maximum flow problem option.* The tests were con-

ducted on four types of graph topologies: random (R), multi-terminal

(MR), transit grid (TG), and hard (H). Tables III, IV, V, and VI con-

* We slightly modified RNET to correct an error in its pricing routine

for maximum flow problems.

_____. .___ _ .: <- ' .
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tain the specifications of each topology type, respectively. A de-

scription of how these problems were generated is contained in [39).

TABLE III

RANDOM PROBLEM SPECIFICATIONS

ARC
PROBLEM INI JAI CAPACITY RANGE

RI 250 1250 1-100

R2 250 1875 1-100

R3 250 2500 1-100

R4 500 2500 1-100

R5 500 3750 1-100

R6 500 5000 1-100

R7 750 3750 1-100

R8 750 5825 1-100

R9 750 7500 1-100

R10 1000 5000 1-100

R11 1000 7500 1-100

R12 1000 10000 1-100
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TABLE IV

MULTI-TERMINAL RANDOM PROBLEM SPECIFICATIONS

AVERAGE NO. OF
ARCS INCIDENT
ON EACH MASTER ARC

PROBLEM iNI* JAI SOURCE (TERMINAL) CAPACITY RANGE*

HR1 250 1250 5.0 1-100

HR2 250 1875 7.5 1-100

MR3 250 2500 10.0 1-100

MR4 500 2500 5.0 1-100

MR5 500 3750 7.5 1-100

MR6 500 5000 10.0 1-100

MR7 750 3750 5.0 1-100

MR8 750 5825 7.5 1-100

MR9 750 7500 10.0 1-100

MRIO 1000 5000 5.0 1-100

MRii 1000 7500 7.5 1-100

MR12 1000 10000 10.0 1-100

*There were five master source nodes and five master terminal

nodes.

**Excluding arcs entering or leaving source and terminal nodes.
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TABLE VI

HARD PROBLEM SPECIFICATIONS

ARC
PROBLEM INI JAI CAPACITY RANGE

Hl 20 190 1-82

H2 40 780 1-362

H3 60 1770 1-782

H4 80 3160 1-1522

H5 100 4950 1-2402

All computer runs were carried out on the Dual CYBER 170/175

using the INF FORTRAN compiler during periods of comparable computer

use. A total of 185 problems were solved. The results, reported in

Table VII, provide median solution times for a group of five problems

(i.e., five different problems of the same dimension were generated

and solved). RNET was run using five different pivot strategies.

The pivot strategies tested varied in the arc pricing frequency used

for each pass through the arc list. This is controlled by the user

supplied parameter, FRQ, in RNET. The heading :.n Table VII indicates

the value used for this parameter (e.g., RNET 1 means FRQ 1 1).

L 1'
------------------------------.
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TABLE VII

COMPUTER TIMES* IN SECONDS FOR MAXIMUM FLOW PROBLEMS
ON A DUAL CYBER 170/175 USING MNF COMPILER

PROBLEMS SEQCS RNET 20 RNET 10 RNET 5 RNET 2 RNET 1

R1 .04 .12 .12 .12 .18 .26
R2 .07 .21 .16 .17 .22 .31
R3 .08 .16 .17 .18 .22 .31
R4 .07 .24 .25 .27 .38 .54
R5 .16 .35 .35 .34 .43 .61
R6 .24 .40 .35 .35 .48 .69
R7 .12 .38 .35 .42 .55 .81
R8 .22 .44 .45 .46 .66 .89

R9 .40 .67 .57 .60 .71 .98
RIO .21 .50 .54 .53 .77 1.08
RI1 .32 .65 .66 .67 .89 1.18
R12 .46 .83 .78 .84 .99 1.34

TOTAL 2.39 4.95 4.75 4.95 6.48 9.00

MR1 .11 .24 .20 .19 .26 .36
MR2 .25 .50 .41 .39 .43 .55
MR3 .25 .36 .36 .35 .39 .49
MR4 .13 .33 .31 .35 .39 .59
MR5 .38 .51 .63 .44 .58 .76
MR6 .67 1.09 .81 .72 .73 1.00

MR7 .30 .53 .56 .46 .67 .90
MR8 .45 .67 .57 .57 .77 1.07
MR9 1.11 2.45 1.50 1.33 1.22 1.52
MRIO .32 .82 .62 .66 .89 1.24
MR11 .86 1.16 1.06 1.12 1.22 1.49
MR12 1.67 2.14 1.89 1.64 1.43 1.73

TOTAL 6.50 10.80 8.92 8.22 7.76 11.70

HI .03 .06 .06 .08 .11 .17

H2 .20 .43 .45 .51 .59 .87

H3 .66 1.50 1.51 1.37 1.88 2.50
H4 1.53 3.97 3.44 3.23 3.96 4.85
H5 2.96 7.58 6.54 6.12 7.61 9.27

TOTAL 5.38 13.54 12.00 11.31 14.15 17.66

TG1 .09 .21 .19 .24 .30 .44
TG2 .08 .20 .18 .23 .33 .46
TG3 .21 .39 .39 .42 .56 .85
TG4 .18 .35 .39 .40 .56 .85
TG5 .35 .64 .64 .67 .89 1.31
TG6 .27 .57 .58 .61 .82 1.24
Ta7 .43 .89 .88 .93 1.14 1.70
TG8 .51 .96 .89 .99 1.25 1.93

TOTAL 2.12 4.21 4.14 4.49 5.85 8.78

GRAND 16.39 33.50 29.81 28.97 34.24 47.14
TOTAL

*Five problems of each type were solved and the solution time reported.
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The times in Table VII indicate that SEQCS strictly dominates RNET

on all problem topologies. The degree of dominance varies substantially,

however. For instance, SEQCS is approximately twice as fast as the best

RNET times, RNET 10, on the grid problems, but it is only 20% faster

than RNET 2 on the multi-terminal random problems.

Overall SEQCS is approximately 80% faster than the best RNET,

RNET 5. Since SEQCS requires less computer memory and its times are

notably better, it appears worthwhile developing totally specialized

primal simplex codes for applications requiring repeated solution of

maximum flow problems.

MINIMUM COST FLOW PROBLEMS

All of the problems previously discussed may be viewed as a sub-

class of the minimum cost flow (MCF) problem class. Since the inception

of mathematical programming, this problem class has received consider-

able attention not only from MCF practitioners and theoreticians, but

from practitioners and theoreticians across all fields of mathematical

programming.

There are a number of reasons for this interest and we shall not

attempt to discuss them in detail. There are, however, two general

attributes which summarize many of the reasons.

One, it is a problem class that has been driven in large part by

the challenge of practice. Historically, the MCF problem class was

one of the first to yield applicable optimization models (e.g., the

models of Hitchcock, Kantorovich, Koopmans). Today, the MCF problem
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class continues to exhibit an even greater ability to model a variety

of important problems. These models motivated the development of the

first usable pencil and paper heuristics and optimization algorithms.

In an analogous manner, new applications continue to beg the question

of improved solution software.

Another attribute is its ability to indicate things to come in

other fields. For instance, MCF models were not only among the first

models developed but they later helped to open up the area of large-

scale optimization modeling. MCF solution algorithms also pioneered

the area of computer optimization software with the development of a

transportation code on the National Bureau of Standards' Eastern Auto-

matic Computer in 1952. Today MCF algorithms are continuing to lead

the way in the development of more efficient computer implementation

techniques for many different types of mathematical programming soft-

ware.

The early algorithmic work of the 1940's and early 50's [14, 15,

42] developed heuristic and/or optimization methods which would now be

called "primal simplex" methods. Following this work, a number of non-

primal simplex methods were proposed including out-of-kilter, dual

simplex, and others [2, 10, 32, 33].

As these later methods came along a belief developed that the

primal simplex method was not an efficient solution procedure for the

MCP problem class. By the mid-60's it was felt that the out-of-kilter

method was the most viable approach. This belief also led to the

.if
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development of a number of specialized out-of-kilter variants for v
different subclasses of the MCF problem class. P

It is interesting to note that this belief ignored the proposals

of Glickman, L. Johnson, and Eselson [361 and E. Johnson [44] for im-

proving the way in which the steps of the primal simplex methods are

performed. Many of these proposals are embodied in contemporary im-

plementations of the primal simplex algorithm for the MCF problem.

Contemporary MCF software development began in 1970 with the

studies by Barr, Clover, and Klingman [4], Glover, Karney, and Klingman

[37], Clover, Karney, Klingman, and Napier [38], Klingman, Napier, and

Stutz [49], and Srinivasan and Thompson [58]. This work broke with

the past in that:

1. Larger and standardized test problems were established [491.

2. Contemporary computer science methodologies were employed.

3. Primal simplex codes as well as others were developed and eval-

uated using the same computer and compiler.

The first comprehensive algorithm comparisons were done by [37, 38,

49] who compare out-of-kilter and primal simplex codes on a diverse

set of test problems. These studies showed that the primal simplex

method is substantially superior to the out-of-kilter method. The

success of the primal simplex method was later independently verified

by experiments [1, 3, 8, 9, 40, 48, 51, 53, 54, 55].

In addition to verifying the efficiency of the primal simplex

method, these later studies proposed alternative pivot strategies and

data structures that were embodied in new codes.
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Two of these codes, GNET [9] and RNET ]40], have received con-

siderable attention due to their reported computational enhancements.

For instance, these studies (9, 401 without comparing directly on the

same computer and compiler, but running on the same problems, each

claim ((9, p. 22-23] and [40, p. 181) that their respective codes are

substantially more efficient than other implementations of the primal

simplex method.

These claims stimulated us to conduct a test comparing these codes

to previously published results. Thus, in June 1979 we tested PNET-I

[37], ARC-II [8], GNET [9], and RNET (version 3.4 [40] on the CDC 6600

at the University of Texas using the FORTRAN MNF compiler and the

same test problems (8, 9, 37, 40]. (See Table VIII for NETGEN problem

specifications.)

The results of this test, which are contained in Table IX, indi-

cate that PNET-I and GNET are comparable in solution speed but inferior

to ARC-Il and RNET and that ARC-II and RNET are comparable in solution

speed. PNET-I requires the least computer memory following by ARC-II,

GNET, and RNET, respectively.

The most important point to be gleaned from this study is that com-

puter efficiency conversion factors are not sufficiently accurate and

should not be used to make code comparisons. The studies (9, 40], each

of whom claimed computations superior, made this claim on the basis of

computer efficiency conversion factors.

In May 1980, Clover, Klingman, Mead, and Mote initiated a study to

integrate and extend the collective ideas of the 70's on MCF software

development. This study is not completed due to the massive number of
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TABLE IX

SOLUTION TIMES IN SECONDS ON A
CDC 6600 USING MNF FORTRAN COMPILER

PROBLEMS ARC-Il GNET PNET-I RNET (version 3.4)

1 .78 1.47 1.07 1.09
2 .89 1.48 1.25 1.07
3 1.01 2.06 1.64 1.11
4 .95 1.88 1.27 1.19
5 1.25 2.09 1.63 1.34
6 2.11 3.27 2.86 2.11
7 2.23 4.16 3.37 2.46
8 2.99 5.08 4.10 3.27
9 2.99 5.15 4.15 3.51
10 4.02 6.00 5.27 4.43
11 1.92 2.23 2.31 1.91
12 2.36 2.97 3.71 2.46
13 3.13 4.07 3.47 3.26
14 2.96 4.62 3.44 3.33
15 3.12 5.47 4.79 3.62
16 1.38 1.90 2.15 1.75
17 1.87 2.32 2.60 1.69
18 1.26 1.86 1.70 1.72
19 1.72 2.31 2.40 1.78
20 1.28 1.79 2.47 1.71
21 1.83 2.51 2.46 1.97
22 1.26 1.86 2.01 1.58
23 1.67 2.26 2.74 1.68
24 1.52 2.48 2.91 1.61
25 1.83 2.80 3.96 2.11
26 1.08 1.88 4.05 1.41
27 1.62 2.43 4.21 1.68
28 4.40 5.93 5.37 3.72
29 4.87 6.26 6.25 4.15
30 4.88 6.85 7.90 4.68
31 5.68 7.23 7.58 4.92
32 7.42 11.47 11.73 6.29
33 7.82 12.61 15.95 6.57
34 8.21 12.12 13.76 7.56
35 8.81 13.46 15.87 8.11

TOTAL 103.12 154.33 162.40 102.85

:1 A
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start, pivot, and data structure options to be investigated.

Preliminary results on a new code, called ARCNET, are very en-

couraging, however. Table X indicates a comparison of PNET-I, GNET,

RNET (version 3.6) (using different pivot strategies), and ARCNET on the

widely used NETGEN [49] problems of the 70's. (See Table VIII.) The

times reported for ARCNET are based on using the same start and pivot

criteria for all problems. Moreover, due to human time limitations this

is the only start and pivot strategy which has been tested in ARCNET.

The heading for RNET indicates the value used for the frequency (FRQ)

parameter. (That is, RNET 5 indicates that the value of the FRQ was

set to 5.)

The data in Table X have been divided into the four parts, problems

1-10 which are transportation problems, problems 11-15 which are assign-

ment problems, problems 16-27 which are capacitated transshipment prob-

lems, and problems 28-35 which are large transportation and transship-

ment problems. Subtotals are provided for each problem class.

There are a number of interesting observations concerning these

subtotals:

1. On transportation problems (problems 1-10) ARCNET is slightly

faster than the best RNET times. All codes are substantially faster

than GNET. Although ARCNET is the fastest code on these problems, it

makes substantially more pivots than PNET-I and GNET.

2. The results on assignment problems (problems 11-15) are

similar to those for transportation problems. ARCNET gains in superiority

over the other codes and again GNET is substantially slower than all

.." .
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other codes. The number of pivots made ty ARCNET as compared to the

other codes has increased percentagevise. (In order to gain some idea of

the advantage of developing specialized algorithms for the assignment

problem, the reader may find it interesting to compare the times in

Tables II and X. The assignment problems, computer, and compiler are

the same.)

3. On the capacitated transshipment problems (problems 16-27),

ARCNET performs extremely well as compared to the other codes being

approximately 60% faster than the closest competitor, RNET 5.

4. On the large problems (problems 28-35), ARCNET is again

faster being approximately 30% faster than the next closest times of

RNET 2.

The total solution times indicate that ARCNET is the fastest

followed by RNET 2. This is somewhat surprising given that the start

and pivot strategies of ARCNET have not been tuned. Another surprising

result is that PNET-I is much faster than GNET on the Dual CYBER 170/175

using the FTN FORTRAN compiler since on the CDC 6600 using the HNF

FORTRAN compiler (see Table IX) they are approximately equal. This

illustrates again the importance of conducting tests on the same com-

puter and compiler.

! I f
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